Welcome!

To ask a question, please use the Q&A section.
Understanding Deep Borehole Disposal Technology in the context of Spent Fuel and High-Level Radioactive Waste Disposal: History, Status, Opportunities and Challenges
Thursday, November 5 14h00/15h30 CET

Panel on Current Deep Borehole Activities with Additional Perspectives

1. **Deep Isolation, Inc., Chris Parker** Deep Isolation is the leading deep borehole disposal commercial concern. The presentation will address their technology and activities.

2. **Havard Kristiansen, Norwegian Nuclear Decommissioning agency (NND)** will provide a presentation on the work being done for the ERDO Working Group on this subject (led by a project being developed in Norway).

3. **Dirk Mallants of the Commonwealth Scientific and Industrial Research Organization (CSIRO) Australia** will discuss their program for evaluating this technology for application in Australia.

4. Over time several countries have expressed interest in this disposal approach, including Croatia, Jordan, Slovenia, UK, Sweden, Denmark and others. There will be an opportunity for WG members to comment on any work they have done, or provide their perspective on this technology.

5. **Moderator led panel discussion.**
DEEP ISOLATION

Disposal of nuclear waste in directionally-drilled boreholes

Overview for IFNEC
5 November 2020
What I will cover today

- Directionally-drilled borehole disposal and how it works
- The key benefits:
 - Safe
 - Equitable
 - Affordable
- Case study: the UK

DEEP SAFE ISOLATED
Secured deep underground in suitable rock, a natural protective barrier

Spent Nuclear Fuel Canister Storage
How it works
Understanding Deep Borehole Disposal Technology in the context of Spent Fuel and High-Level Radioactive Waste Disposal: History, Status, Opportunities and Challenges
Horizontal disposal creates new opportunities

- Directional drilling allows us to tailor repository design for the needs of a specific inventory and specific geology
- Optimal might be vertical, deviated or horizontal – our partnerships, supply chain and our IP support all of these

Horizontal boreholes:

- Deliver high levels of safety combined with cost benefits
- Address many concerns that have led some governments and regulators to steer clear of disposal in traditional vertical boreholes
Passive features of a horizontal repository offer solutions to concerns raised about borehole disposal

OPERATIONAL RISK
- A dropped canister will impact canisters already emplaced with risk of damage
- A dropped canister will decelerate in the curved section, drifting safely to a halt prior to the repository

SEALING RISK
- Direct vertical transmission path from repository to the surface

TEMPERATURE RISK
- Naturally higher temperatures at greater depth
- Prolonged thermal disturbance
- Thermally-driven buoyancy flow aligned with vertical access hole
- The ‘horizontal’ disposal section is offset from the vertical access and is inclined upward at slight angle (~2deg).
- This directs any thermally-driven migration of radionuclides to the ‘dead end’ section of the repository and away from the access shaft
- Shallower depths start cooler (typical repository 40 - 60C)
- Lower maximum temperature, faster cooling and return to thermal equilibrium of system
- Buoyancy force offset from access hole and not aligned with horizontal disposal section

CRUSHING RISK
- Waste canisters at the bottom of a borehole face pressures from the cumulative weight on top of them
- This requires investment in bridge plugs to protect canisters
- All canisters lie horizontally and with zero pressure from other canisters

Understanding Deep Borehole Disposal Technology in the context of Spent Fuel and High-Level Radioactive Waste Disposal: History, Status, Opportunities and Challenges
Marginal costs of a horizontal repository do not keep growing with the size of inventory for disposal

Great depth is needed to store enough waste, with costs (for drilling, casing, EBS) increasing with depth.

Costs increase only linearly with length of the horizontal disposal section.
Developing an innovation ecosystem to tackle a global problem

1. Innovation
 - 40+ inventions, with 38 US and international patents granted and in development:
 - Formation suitability
 - Repository Design
 - Canister Design
 - Handling, Emplacement, & Retrieval
 - Monitoring
 - Most support all borehole architectures, some are specific to vertical or horizontal

2. Open and peer-reviewed science

3. World-class supply chain
 - Nuclear waste handling
 - Drilling

4. Inter-disciplinary, cross-sector stakeholder engagement
 - universities
 - NGOs
 - communities
 - local government
 - civil society
 - green energy
 - citizens
 - municipalities
 - oil & gas
 - environment
 - research institutes
 - schools
 - nuclear
 - National Geological Surveys
 - collaborator partners
 - NGOs
 - communities
 - local government
 - civil society
 - green energy
 - citizens
 - municipalities
 - oil & gas
 - environment
 - research institutes
 - schools
 - nuclear
 - National Geological Surveys

5. Client collaboration
 - Perhaps most importantly, we are now deeply engaged with potential clients and partners around the world – including many national radioactive waste management organizations
 - Key focus of this engagement:
 - Waste inventory review
 - Geological suitability
 - Regulatory pathways
 - Local economic development impacts
 - Stakeholder engagement processes
The key benefits

Safe, equitable, affordable
GEOLOGIC ISOLATION

- Peer reviewed safety calculations support robust safety. Peak dose is 3 orders of magnitude below a 10mrem regulatory limit.

SENSITIVITY ANALYSIS AND DISRUPTIVE SCENARIOS

- The baseline repository design is robust to uncertainty in model parameters.
- The repository design is robust to extreme events, providing a margin of safety similar to the base case.
An Equitable Solution

COMMUNITY EQUITABILITY
- We are committed to stakeholder partnership and consent
- Our research shows borehole disposal offers potential to address key community concerns about geologic disposal

GENERATIONAL EQUITABILITY
- Can be implemented in years, not the decades required for traditional repositories
- Helps our generation deal with our own legacy and newly-generated waste, rather than keep ‘kicking the can down the road’
An Affordable Solution

1. Lower costs across the repository lifecycle

- Lower transport costs
- Lower construction costs
- Faster implementation
- Avoided storage costs
- Lower operational costs

Our published case studies show savings of 50-70%

2. Lower financial risk

- The bulk of costs for construction of a borehole repository are based on off-the-shelf technologies that are deployed on a daily basis in the oil and gas sector
- Reduces the risk of cost and delivery overruns
UK case study
UK case study – purpose and objectives

- In February 2020, as part of UK Government’s policy to explore alternative options for high activity waste disposal, NDA commissioned us to undertake a preliminary assessment of Deep Isolation’s solution in the UK context.

- The work is nearly finished, and will be published later this year.

- No decisions have been made by NDA about our technology, but they are happy for us to share some of the preliminary conclusions from our work so far.

PURPOSE

To provide NDA with information that enables it to assess the potential suitability of Deep Isolation’s horizontal borehole disposal solution for elements of the UK’s nuclear waste inventory.

OBJECTIVES

1. To map Deep Isolation’s solution against the UK Inventory for Geological Disposal
2. To map our solution against three typical UK geologies
3. To describe and evaluate Deep Isolation’s concept in the context of the UK’s generic safety case for geological disposal
4. To prepare high-level cost estimates for use of our solution in the UK
UK case study – preliminary conclusions

1. 11% of the UK’s Inventory for Geological Disposal is potentially suitable for disposal in horizontal boreholes. This includes all the UK’s high heat generating waste.

2. Deep Isolation’s solution is aligned with safety expectations across the three generic UK geologies – but with further evidence and demonstration needed in Higher Strength Rocks.

3. Cost estimates across 15 scenarios range from £1.92 - £2.65 billion for all HHGW. Within that, ranges for HLW only are £0.33-0.36 billion, and legacy spent fuel are £0.69-0.9 billion.

4. Further work and analysis is needed on a range of regulatory, social, geological and operational issues.
The world has not yet disposed any of the spent fuel it has created over the last 70 years.

The current model for geological disposal is simply not scalable.

Directionally-drilled borehole repositories offer a feasible, scalable, safe and affordable solution - and the technology to deliver this exists now.

Deep Isolation is committed to working with you to make this happen.
Thank you

chris@deepisolation.net
The ERDO Borehole Disposal Project

Håvard Kristiansen
Norwegian Nuclear Decommissioning &
European Repository Development Organization

Understanding Deep Borehole Disposal Technology in the context of Spent Fuel and High-Level Radioactive Waste Disposal: History, Status, Opportunities and Challenges
The European Repository Development Organization

- Consists of waste-management organizations from European nations with small inventories of radioactive waste.
- Originally formed as a working group for studying multinational repositories.
- Now focuses more competence sharing, as well as on advancing knowledge about the potential of multinational repositories.
- Borehole disposal is of interest both as a topic for shared development and as a potential concept for a multinational repository.
ERDO borehole project

Purpose of the project: To describe one or more specific borehole disposal concepts, based on available (drilling) technology and the anticipated waste inventory of participating nations.

Output *(this presentation contains the topics in bold)*:
- One or more reference designs for a borehole disposal facility
- Compatibility of national waste inventories with the reference design
- Cost estimates
- Strategic implications of borehole disposal
 - Assessment of project risk
 - Strategy for developing a safety case
 - Time of implementation
 - RD&D-need

Start of project: Jan 2020. End: June 2021
Our reference design includes a canister that is compatible with both spent fuel and HLW from reprocessing

- BSK-R container
 - external length: 5060 mm
 - internal length: 4845 mm
 - internal diameter: 431 mm
 - external diameter: 520 mm
- A specific design needs to be developed, including:
 - Copper coating with cast iron or steel insert?

DBC-R container, containing three canister of reprocessing waste and one fuel rod (Bracke et al.)

Croatia and Slovenia

- Share ownership and responsibility for the nuclear powerplant in Krško
- 2282 assemblies (926 tons) of spent fuel expected by final shut down
- Slovenia will also need to manage approximately 0.2 tons spent fuel from a Triga research reactor, which is expected to remain in operation until 2043. For simplicity, the Triga fuel is not included in the following analysis
- 1 fuel assembly per borehole canister gives 2282 canisters
- Narrower canisters (lower cost for the same borehole length) or wider canisters (>1 assembly per canister) should be considered

Decommissioning and operation of an encapsulation facility for spent fuel is expected to generate 409 m3 HLW, packed in HI-SAFE-containers (diameter = 2.5 m, too large for boreholes)
Denmark

- Denmark has had three research reactors in operation. All have been shut down.
- The fuel has been returned to the country of origin, but 233 kg of residues from post-irradiation experiments remain. This is classified as high-level waste (but it is not heat generating)
- The 233 kg are held in 33 stainless steel cylinders, 5 of which could fit in each borehole canister. Therefore, Denmark would need 7 borehole canisters.
The Netherlands

- Nuclear power plants:
 - Borsele (1973-)
 - Dodewaard (1969-1997)
- Research reactors:
 - High-flux reactor (1961-)
 - Low-flux reactor (1960-2010)
 - Hoger Onderwijs Reactor (1963-)
- The Dutch strategy is to accumulate and store waste until 2130, while investigating permanent solutions

Expected inventory in 2130

- 1078 canisters of reprocessing waste (CSD-V and CSD-C). These could fit in 359 borehole canisters
- 350 ECN-containers of spent research reactor fuel and other HLW. ECN-containers are too wide for the reference borehole

Figures: COVRA
Norway

- Norway has had four research reactors in operation. All are now shut down.
 - Joint Establishment Experimental Pile I (JEEP I)
 - Norwegian 0-energy Reactor Assembly (NORA)
 - JEEP II
 - Halden Boiling Water Reactor
- 16.5 tons of spent fuel of various types require a long-term solution. It could all fit in 69 borehole canisters.
A significant portion of, but not all the waste could fit in the borehole concept.

- NPP Krsko
- Spent fuel (\(\varnothing < 0.28\) m)
- Decom & oper. HLW in HI-SAFE (\(\varnothing = 2.5\) m)
- Reprocessing waste (\(\varnothing = 0.44\) m)
- HLW in ECN containers (\(\varnothing = 0.85\) m)
- Borehole: 730 m³
- DGR: 652 m³
Understanding Deep Borehole Disposal Technology in the context of Spent Fuel and High-Level Radioactive Waste Disposal: History, Status, Opportunities and Challenges

- Shallow (little or no overburden) formations with low-permeability, competent and drillable host rock enable relatively shallow disposal.
- The cost of a borehole increases exponentially with depth.
- Costs depend on the design, which in turn depends on the waste form, the size of the waste inventory, the geological conditions, and the safety requirements.
- Uncertainties in safety requirements (e.g. canister lifetime and spacing) → design uncertainties → cost estimate uncertainties.
- Time-dependent radiotoxicity, waste-form stability, and the mobility of radionuclides depends on the waste. These factors affect the safety requirements, such as depth and canister properties.
- Wider holes can accommodate larger waste packages and therefore potentially more waste per unit depth.
- Wider holes are more expensive than narrower holes, because they need bigger rigs for casing strings etc.
The following slides show the results of a Monte Carlo simulation with three concepts and three variables, carried out for each national inventory (Croatia and Slovenia combined).

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total borehole length (m)</td>
<td>3500</td>
<td>2000</td>
<td>1000</td>
</tr>
<tr>
<td>Length of disposal zone (m)</td>
<td>2000</td>
<td>800</td>
<td>100</td>
</tr>
<tr>
<td>Length of sealing and backfilling zone (m)</td>
<td>1500</td>
<td>1200</td>
<td>900</td>
</tr>
<tr>
<td>Cost of site investigation + construction + sealing (MEUR)</td>
<td>60-120</td>
<td>40-80</td>
<td>10-30</td>
</tr>
<tr>
<td>Buffer distance between canisters in the disposal zone (m)</td>
<td>0.4-4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operational/emplacement cost per canister (MEUR)</td>
<td>0.03-0.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parameters and ranges of variables estimated based on available literature.
Havard Kristiansen, Norwegian Nuclear Decommissioning agency (NND)

Understanding Deep Borehole Disposal Technology in the context of Spent Fuel and High-Level Radioactive Waste Disposal: History, Status, Opportunities and Challenges

Borehole disposal designs must be tailored to each individual situation to identify an optimal design that yields the least cost.

- **Economies of scale favour large boreholes for larger inventories**
- **Significant cost reductions are probable for Croatian and Slovenian waste if the design is adapted to the size of the fuel assemblies**
- **Norway would need 5-7 boreholes of 1000 m depth, but no more than one 2000 m deep one. The latter is therefore more cost efficient.**
- **Denmark needs only one short borehole, but geological conditions and safety assessments could make the 2000 m deep design necessary.**
Borehole disposal challenges the rationale of multinational repositories

<table>
<thead>
<tr>
<th></th>
<th>Median cost of the most cost-efficient concept (MEUR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Croatia & Slovenia</td>
<td>1241</td>
</tr>
<tr>
<td>Denmark</td>
<td>21</td>
</tr>
<tr>
<td>NL</td>
<td>240</td>
</tr>
<tr>
<td>+ Norway</td>
<td>71</td>
</tr>
<tr>
<td>= Sum</td>
<td>1573</td>
</tr>
<tr>
<td>Shared facility</td>
<td>1474</td>
</tr>
<tr>
<td>Savings from sharing (%)</td>
<td>6 %</td>
</tr>
</tbody>
</table>

The modular nature of borehole disposal could enable small-inventory states to independently implement a permanent solution to their high-level radioactive waste at a relatively low cost.
<table>
<thead>
<tr>
<th>Country</th>
<th>Inventory size</th>
<th>Cost</th>
<th>Unit cost</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Netherlands</td>
<td>209 m³</td>
<td>238 MEUR</td>
<td>1.1 MEUR/m³</td>
<td>0.6 m wide, 3500 m deep diameter borehole</td>
</tr>
<tr>
<td>Croatia & Slovenia</td>
<td>926 tons</td>
<td>1226 MEUR</td>
<td>1.3 MEUR/ton</td>
<td>0.34 m diameter 5000 m deep borehole.</td>
</tr>
<tr>
<td>Sandia NL (Arnold, 2011)</td>
<td>254 tons/borehole</td>
<td>40 MUSD/BH</td>
<td>0.16 MUSD/ton</td>
<td>0.41 m diameter, 2000-2700 m deep boreholes</td>
</tr>
<tr>
<td>Bates (2015)</td>
<td>80 000 tons</td>
<td>4000-15 200 MUSD</td>
<td>0.05-0.19 MUSD/ton</td>
<td>0.44 m diameter horizontal drillholes</td>
</tr>
<tr>
<td>Deep Isolation (2020)</td>
<td>2000 tons</td>
<td>724 MUSD</td>
<td>0.36 MUSD/ton</td>
<td></td>
</tr>
<tr>
<td>Deep Isolation (2020)</td>
<td>151 800 tons</td>
<td>82 000 MUSD</td>
<td>0.54 MUSD/ton</td>
<td></td>
</tr>
<tr>
<td>SKB PASS-project</td>
<td>7757 tons</td>
<td>7490 MEUR</td>
<td>0.97 MEUR/ton</td>
<td>Recalculated to 2020-costs</td>
</tr>
<tr>
<td>Deep boreholes (1992)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France (Cigeo, 2012)</td>
<td>85 000 m³</td>
<td>34 400 MEUR</td>
<td>0.40 MEUR/m³</td>
<td>Mined repository</td>
</tr>
<tr>
<td>Finland (Posiva, 2012)</td>
<td>5486 tons</td>
<td>3500 MEUR</td>
<td>0.64 MEUR/ton</td>
<td>Mined repository</td>
</tr>
</tbody>
</table>

Optimization of the canister design could reduce the costs significantly for Croatia & Slovenia.

Our reference design is robust and applicable for all project members, but it is not necessarily the optimal design for all.
Encapsulation remains an unanswered question

Filling and sealing canisters could require advanced and costly facilities, but requirements and costs depend on the safety functions of the canisters.

Encapsulation, R&D, tools, procedures, and competence could be topics for international collaboration or commercial enterprise.

All images from Posiva Oy (http://www.posiva.fi/en/final_disposal/final_disposal_facility/encapsulation_plant)
Take-home messages

Costs depend on the design, which in turn depends on the waste form, the size of the waste inventory, the geological conditions, and the safety requirements.

The modular nature of borehole disposal could enable small-inventory states to independently implement a permanent solution to their high-level radioactive waste at a relatively low cost.

Borehole disposal designs must be tailored to each individual situation to identify an optimal design that yields the least cost.

Encapsulation, R&D, tools, procedures, and competence could be topics for international collaboration or commercial enterprise.

Thank you for your attention.

havard.kristiansen@nnd.no
Borehole Disposal Demonstration Project: Overview & Collaboration Opportunities

Presentation to IFNEC

Dirk Mallants, Tito Bonano, Geoff Freeze, Patrick Brady, David Sassani | 5/11/2020

Australia’s National Science Agency
Borehole disposal: Technical feasibility and conditions for long-term safety

• Deep Borehole Demonstration Project
 ✓ Near surface waste emplacement testing
 ✓ Development of wasteforms & disposal containers
 ✓ Development of enabling technologies
 ✓ Waste emplacement testing in a deep, large-diameter borehole
Waste emplacement tests

• Above-ground tests
 ✓ Container unloading & emplacement

• Below-ground tests
 ✓ Deep drilling
 ✓ Rock sensing
 ✓ Container emplacement

2 km

0.7 m
Waste emplacement tests
Novel wasteforms & disposal containers

• Synroc wasteform
 ✓ LEU from Mo-99
 ✓ Pu immobilisation
 ✓ Gen(IV) wastes
 ✓ SMR wastes
✓ Wasteform alterations under borehole environment
✓ Multi-purpose disposal container

Container design: Bracke et al. 2016, 2017, 2020
Metallic coating (Cu, Ti): Cold spray
Enabling technologies

- Borehole sealing materials
 - Bentonite under extreme conditions (TMC)
- Advanced sensing
 - Rock features at great depth
- Robotics
 - Waste handling during emplacement
- Monitoring
 - Seal performance: fiber optics, wireless sensing
- Siting
 - ML for unbiased site screening
Waste emplacement in deep, large-diameter borehole

- Full-scale demonstration tests
 - Characterisation borehole (2000 m)
 - Drilling deep, large-diameter hole (2000 m)
 - Waste emplacement testing of dummy canister & seal emplacement

- Performance and Safety Assessment
 - Various waste types/forms
 - Various scenarios
 - Safety case

- Timescale: 2021-2028

- Multi-organisation collaboration (Borehole Demonstration Consortium)
Dirk Mallants - Commonwealth Scientific and Industrial Research Organization (CSIRO) Australia

Understanding Deep Borehole Disposal Technology in the context of Spent Fuel and High-Level Radioactive Waste Disposal: History, Status, Opportunities and Challenges

Generic safety assessments

Model set-up:
- Inventory: 100 CSD-U containers
- Disposal depths:
 - 300 – 500 m; 800 – 1000 m; 2800 – 3000 m
- Groundwater flow:
 - 0-25 m: Regolith (High permeability)
 - 25-100 m: Weathered basement rock (Medium perm)
 - > 100 m: Crystalline basement rock (Low perm)
- Sensitivity analysis for rock permeability:
 - Low perm x 100; Low perm/100
- Sensitivity analysis for radionuclide sorption:
 - Lower limit – Upper limit sorption parameter
- Wasteform and engineered barriers:
 - Instantaneous release
 - No engineered barriers at disposal zone
 - Cementitious and bentonite seals above disposal zone
Confirm rocks devoid of fresh groundwater:
Noble gases in fluids & fluid inclusions

Helium: $^3\text{He}, ^4\text{He}$

Neon: $^{20}\text{Ne}, ^{21}\text{Ne}, ^{22}\text{Ne}$

Argon: $^{36}\text{Ar}, ^{38}\text{Ar}, ^{40}\text{Ar}$

Krypton: $^{82}\text{Kr}, ^{83}\text{Kr}, ^{84}\text{Kr}, ^{86}\text{Kr}$

Xenon: $^{124}\text{Xe}, ^{126}\text{Xe}, ^{128}\text{Xe}, ^{129}\text{Xe}, ^{132}\text{Xe}, ^{130}\text{Xe}, ^{131}\text{Xe}, ^{134}\text{Xe}, ^{136}\text{Xe}$
Understanding Deep Borehole Disposal Technology in the context of Spent Fuel and High-Level Radioactive Waste Disposal: History, Status, Opportunities and Challenges

Atom Trap Trace Analysis - ATTA

Groundwater age determination with laser-based counting of individual atoms of krypton & argon

Radiokrypton (85Kr - 81Kr) & radioargon (39Ar)
Take home messages

• Many of the key components/technologies for demonstrating deep borehole disposal feasibility are available or need some, but limited modification.

• A full-scale, integrated drilling, waste emplacement and sealing test has not yet been undertaken, but is achievable in a 7-10 y timeframe

• International experience and collaboration should lessen the technical challenges

• Scientific and technological spin-offs (in-situ mining, seals for oil & gas, ...)

Thank you

Land and Water
Dr. Dirk Mallants
Team Leader Environmental Tracers
+61 8 8303 8595
dirk.mallants@csiro.au
csi.ro.au/landandwater
Some questions for the panel...

1. Are the safety case and the safety case requirements for DBD fundamentally different to a DGR and, if so, how do we communicate this?

2. What will it take to bring DBD up to a similar cycle and level of regulatory approval as ‘conventional’ DGRs?

3. Where is the main technical challenge in building the credibility of DBD to a similar level as DGRs?

4. What are the key factors that a DBD demonstration test should address: are any of them in conflict (e.g., sealing v. retrievability)?

5. Is it correct that DBD opens up a much wider range of siting options than a conventional DGR?

6. How much site characterisation is actually necessary for DBD, compared to a conventional DGR and is it more or less demanding?

7. What type of national RWM programme do you consider the most likely users of a DBD facility and would it be integral to or separate from their main programme?

8. Where do you think we will be with DBD in ten years time - is it a solution worth investing in and waiting for?